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ABSTRACT:

The use of the dual graph in determining the value of the
maximal flow capacity of an undirected network has been extended to
directed networks. A directed dual graph is defined such that the
length of the shortest route through this dual is equal to the
maximal flow capacity of its directed primal. Feasibility of a
specified exogenous flow for networks having positive lower bounds on
arc flows can also be appraised. Infeasibility is indicated by a dual
cycle of negative length.
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1. INTRODUCTION

Ford and Fulkerson [2] have sugrested that an ecasy way to find
the value of the maximum possible flow through an undirected network
is to construct the dual graph, assign the capacities of the {nter-
sected primal arcs as lengths of arcs in the dual, and then find the
shortest rout through the dual. The length of this shortest route
represents the value of the undirected minimum cut set. From the min-
cut max-flow theorem we then know this length is equal to the value of
the maximum possible flow through a network. The purpose of this paper
is to extend this idea to flows in directed networks; particularly net-

works having nonzero positive lower bounds on arc flow.

2. MAXIMAL FLOW IN AN UNDIRECTED NETWORK

We begin with a statement of a procedure for constructing the
dual graph of an undirected network [4].

1. Denote the original maximal flow network as the primal
network. Connect an artificial arc between the sink and source of the
primal. The network will then be referred to as the modified primal
network.

2, Place a node in each mesh of the modified primal including
the external mesh. Let the origin of the dual be the node in the mesh
involving the artificial arc and the destination be the node in the
external mesh.

3. For each arc in the primal (except the artificial arc)
construct an arc that intersects it and joins with nodes in the meshes

adjacent to it.



4. Assign each arc of the dual a length equal to the capacity
of the primal arc it intersects.

The shortest route through the dual can be determined by first
assuming every arc of the dual can be replaced by two oppositely directed
arcs of the same length and then applying any one of the well known
shortest route algorithms. Several are given by Dreyfus [1].

By way of example, consider the undirected network shown in
Figure 1. The number beside v~ :h arc is its undirected flow capacity

through an a21¢ (i,j) 1is therefore bounded

M Any flow X

i (i
according to (1).

ij

-M,.£X,.,M (1)
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Figure 1.

Tae construction of the dual is shown in Figure 2 where arc (4,1)
is the artificial arc added to facilitate the construction process.
The undirected dual consists of the nodes A, B, C, and D and the
dashed arcs shown in Figure 2. Node A will be the origin and node D

will be the destination.



Figure 2.

The shortest route problem is then to find the shortest route
from node A to node D if the undirected arcs of the dual are replaced
by oppositely directed arcs having lengths corresponding to flow capa-
cities of the primal arcs they intersect. Figure 3 shows the dual of

the example in directed form ready for determining the shortest route.

Figure 3.

The shortest route from A to D is A-C-D with a length of 7.
Therefore the maximum possible flow through the network of Figure 1 is
7 units. Because the arcs of the primal intersected by the arcs from the
shortest route of the dual are the minimum cut set of the primal [2], we
know that arcs (2,4) and (3,4) are the minimum cut set for this

example.



3. MAXIMAL FLOW IN A DIRECTED NETWORK

If the network of Figure 1 is changed to the directed form shown

in Figure 4 where arc flow is restricted to

(L

then the structuring of the dual shortest route problem requires some
care. The construction of the dual is the same in the initial phases
as that shown in Figure 1. However, there cannot be two oppositely

directed arcs of the same length if the lengths of the routes through

the dual are to correspond to values of the cut sets of the primal.

Figure 4.

The following convention will be used for determining the lengths
of the dual arcs. Beginning with the arcs incident with the dual source,
assign the length Mij to chat dual arc having the same direction as
if the crossed primal arc had been rotated 90 degrees counterclockwise.
Then assign a length of zero to the dual arc oppositely directed. Thus,
the arc (A,B) in Figure 3 should have a length of 3 and the arc (B,A)

should have a length o zero because arc (1,3) is directed from node



1 to node 3. The arc (B,C) should have a length of 2 and the
arc (C,B) should have a length of zero because arc (2,3) is directed
from node 2 to node 3. This convention results in the dual shortest

route network shown in Figure 5.

Figure 5.

If the reader reflects for a moment on what we have just done
and compares it with the case of maximum flow in undirected arcs he will
realize that we have changed one arc of each pair of dual arcs from a
length of M1j to that of zero. An undirected arc (i,j) can be
thought of as having a flow capacity restriction of the form given by

(2),

-M =X =M

ij ij ij’ 2)

while the flow restrictions for arcs in a digraph are usually of the
form given by (1). The change we have made has been only the length
of the arc corresponding to the lower bound.

We immediately realize that the arc corresponding to the lower
bound could have any value of length. For example, there is nothing

to restrict us to having a2 lower bound on primal arc flow which is the



negative of M when it could be any other negative number (even

13
minus infinity), The dual arc would then have a positive length equal
to the negative of the lower bound value.

This fact suggests a way of looking at flow problems having

positive lower bounds; that {s,

0«1L,,6 &N =M

TRET (3)

N
Following our observations above we would assign the "lower bound

arc of the dual pair i.tersecting primal arc (i,)) a length value of

-Lij' This results in one or more routes through the dual having
lengths consisting of a sum of positive “l] values and negative LIJ
values.

Now the value of a generalfized cut set when lower bounds are
positive i{s given by equation (4) where the set S contains the source
node; the set S contains the sink node [3). Thus, our convention of
assigning the negative of the Llj values to the dual "lower bound"
arcs provides any route without cycles through the dual with a length

corresponding to the value of the generalized cut set intersected by

those dual arcs.

v(s,§) = ] M

-7 (4)
s 4 oqs Y
jcS JcS
\

By vay of example, suppose the graph of Figure 4 has positive lower

bounds added to it as shown in Figure 6. The numbers on each arc are

Ltj'"lj'
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Figure o,

The dual of Figure 6 In shown 1n rigure 7.

Vigure 7.

From Figure 6 we know that the value of the cut set consisting

of ares  (1,2), (2,3), and (3.4) |Ix

nlz+nu-Ln-Sol-l-7. (5)

The route through the dual network which corresponds to this cut

set Is the chaln  [(AC) (U B)(H,0)] which has a length given exactly

by equation (5).
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A minimum route in Figure 7 happens to be the chain
[(A,C),(C,B),(B,D)] so0 that the maximum possible flow through the

primal network is, in fact, 7 units.
4, THE QUESTION OF FEASIBILITY

For problems having at least one arc with a positive lower bound
the question of feasibility is of importance. We consider two forms
of the question. If we ask, "What {s the maximal possible flow through
a network?", then we can analyze the shortest route through the dual
to see if it i8 nonnegative or not. 1Its length, if pesitive, will be
the value of the maximum possible flow; if zero, a feasible flow within
the network is possible but no exogenous flow can leave or enter the
network. If the protlem has no feasible flow then any shortest route
algorithm used will detect a3 cycle of negative length implying that the
shortest route has an infinite negative length. Infeasibility in the
primal maximal flow problem means that some lower bound is forcing a
flow which would exceed an upper bound somewhere else in the network.

An example of an infeasible maximal flow network 1s shown in
Figure 8. The arcs (2,3) and (2,4) are lower bounded with values
of 1 and 4, respectively. Only arc (1,2) can provide flow to
these arcs. Unfortunatelv, {1,2) has an upper bound value of 2
which prevents the needed 5 wunits of flow from reaching (2,3) and
(2,4).

The dual for the problem is shown in Figure 9. One cycle of

negative length consists of arecs (B,h), (D,C), and (C,B) with a

length of <3 which is the difference between the maximum amount that
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arc (1,2) can provide and the minimum amount needed by arcs (2,3)

and (2,4).

Figure 8. Figure 9.

More complicated examples involving less obvious infeasibilities

can be developed. The network, of Figure 10 for example, 1s infeasible

because the sums of the lower bounds on ares (1,2) and (1,3) exceed .
the upper bound on arc (4,5). The dual is shown in Figure 1l1. A cycle l
of negative length consists of (A,C), the upper (C,B) arc, and either 1
the upper or lower (B,A) arcs., The length of this cycle is -1 which

we realize is the amount of capacity that arc (4,5) 1s short,.

Figure 10.
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Let us now turn to the second form of the feasibility question;
"Is it possible to send a flow of a specified amount through the network?"
If a network has all zero lower bounds on arc capacities then knowing
maximal flow we can also answer this question. If the specified flow
is larger than the maximal capacity the problem is infeasible; if it
is less than or equal to the maximum capacity then the problem is
feasible. If a network has positive lower bounds on arc flows then know-
ing the value of the maximal possible flow allows us to answer the
question only 1f the specified flow is greater than or equal to the
maximal possible. If the specified flow is less then there is no

guarantee that it will be feasible,.

Figure 11.

Consider, for example, the network in Figure 12. The maximal
possible flow which can be sent from node 1 to node 2 1is 4; the
minimal possible feasible flow is 1. An internal circulation of 2
units meets the flow feasibility requirewent of arc (2,3) and arc
(3,1) as well for the maximal flow problem. For the minimal flow
problem an internal circulation of 3 units is required. These three
units plus the one exogenous unit meet the flow feasibility requirement

for arc (1,2). Thus, a specified Q 1is feasible only if it is in

the interval 1 £ Q £ 4. Otherwise it will be infeasible.
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The feasibility question involving specified Q can be easily
handled using the dual shortest route approach if we add an arc directed
from the sink to the source having lower and upper bounds on its flow
equal to the specified Q. If this specified Q is not feasible then
a cycle of negative length will appear. If the specified Q is maximal
feasible, then the length of the shortest route through the dual will
be equal to Q. If the specified Q 1s feasible but the maximal possible
flow is larger then the length of the shortest route through the dual
will be the value of the maximal flow. To illustrate these features,

we add the arc (2,1) to Figure 12 and Figure 13.

4.6

Figure 12.

Figure 13.
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The addition of an artificial arc is not necessary for the con-
struction of the dual when an arc already exists from the sink to the
source, We merely designate the dual origin as the node in the mesh
associated with the primal sink to source arc. It should be noted,
however, that we must have a dual arc to intersect the legitimate sink
to source arc. The initial phase of the dual construction is shown in

Figure 13. The final dual form is shown in Figure 14.

Figure 14.

Suppose now that the value of Q 1is larger than 4. The only
cycle of negative length from A back to A consists of the lowest
(A,B) arc, arc (B,C), and arc (C,A). The length of this cycle is
4 - Q. As Q decreases to 4 this cycle length goes to zero. For
all Q less than &4 1ts length remains positive.

Suppose next that Q < 1. The only cycle of negative length from
A back to A consists of the arc¢ (A,C), arc (C,B), and the lower
(B,A) arc. The length of this cycle is Q - 1. As Q increases to 1
this cycle length goes to zero. For all Q > 1 it has positive length.

Ford and Fulkerson [3] present a circulation theorem (theorem 3.1)

which specifies that a network flow problem will be feasible if and only if
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DMz fL (6)
ey 4 1e7
je¥ jeY

for all cut sets (Y,?) of a network which has an arc (n,l) with
lower and upper bounds on its flow. The addition of (n,l) creates
a sourceless~sinkless network.

If we examine the dual as shown imposed in Figure 13 we see that
every circuit corresponds to a cut set of the type Ford and Fulkerson
address in their circulation theorem. The inequality (6) 1is nothing
more than another way of writing (4) for a sourceless-sinkless network.
The negative cycles we encountered in Figure 14 are due to the general-~
ized cut set value in question being negative for the specified Q wvalue.
Therefore, a negative cycle indicates a cut set which violates (6).
And, as the theorem states, only one such cut set is needed to make a
problem infeasible,

Finally, the sourceless-sinkless structure can also be used to
answer the question of whether any nonnegative flow would be feasible.
In that case we would assign zero as the lower bound and infinity as
an upper bound on the arc from the sink to the source. The value
of the maximal possible feasible flow would still appear as the length
of the shortest route from the origin to the destination of the dual.

Infeasible networks would cause a cycle of negative length in the dual.




(1)

(2)

(3

(4]

16

REFERENCES

Dreyfus, S. E., "An Appraisal of Some Shortest Path Algorithms,"
Operations Rescarch, Vol., 17, No. 3, May-June 1969,

Ford, L. R, and D. R. Fulkerson, "Maximal Fluw Through a Network,"
Canad. Jour. Math., Vol. 8, No. 3, 1956.

Ford, L. R. and D. R. Fulkerson, Flows (n Networks, Princeton
University Press, Princeton, New Jersey, 1962.

Wollmer, R. D., "Removing Arcs from a Network," Opcrations Reseanch,

Vol. 12, No. 6, November-December 1964.




UNCLASSIFIED

Security Classification 18
DOCUMENT CONTROL DATA-R&D
(Security clasailication of title, body of abatract and indexing ennotation muat ba entered when the overall t la clasellied,
1. ORIGINATING ACTIVITY (Corporate author) 20. REPORT SECURITY CLABSSIFICATION
Naval Postgiraduate School Unclassified
Monterey, California 2. sRouUP

i T L
3. REPOARYT TITLE

Appraising Feasibility and Maximal Flow Capacity of a Network

4. OESCRIPTIVE NOTES (Type of repert and, inclueive dates)

Technical Report 1970
1?TU=Etiﬂﬂ7iﬁﬂ1=£=1ﬂilrﬁﬂﬂﬂfﬁ-nu.n
McMasters, Alan W.

hQ. REPORTY [-TR4] 7a. TOTAL NO. OF PAGES 70. NO. OF REFS

23 October 1970 20 4
RACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)
5. PROJECT NO. NPS-55MG70101A
.. . alv.n::.:',nont NO(S) (Any other numbere Hhat may be assigned
d.

10. DISTRABUTION STATEMENT

This document has been approved for public release and sale; its distribution
is unlimited.

| EETATAAAES. Se—ES——— T~
1", .U’:L'NI’JYA-V NOTES 12. SPONSORING MILITARY ACTIVITY

T3 AseTRaCY

The use of the dual graph in determining the value of the
maximal flow capacity of an undirected network has been extended to
directed networks. A directed dual graph is defined such that the
length of the shortest route through this dual is equal to the
maximal flow capacity of its directed primal. Feasibility of a
specified exogenous flow for networks having positive lower bounds
on arc flows can also be appraised. Infeasibility is indicated by
a dual cycle of negative length.

UNCLASSIFIED

/M 0101-097-0011
‘4~ 81400



UNCLASS1FLED

" Y

(S ¥}

Lin O

[Aad Y

T} 0L LA

19

bin €

a0L 8

Network flows
Graph theory
Peasibility
Optisization

DD /.1473 won

8/8 0101°007-0321

UNCLASSIFIED

~ Security Classificetion

A=31409




